Advertisements

The Holy Grail of Mobile Layout

The Holy Grail of Mobile Layout

The perfect mobile layout should allow the presence of a navbar, a content area and maybe a footer toolbar. This layout should resize with orientation changes such that the bottom toolbar is always at the bottom and the content area resizes its width and height to fit the new dimensions. This is tough because, first off, there is not fixed positioning, and secondly, there is no single finger scrolling in Webkit for CSS defined scrolling regions.

it’s taken me a while to come up with a solution to these layout requirements. Any of you trying to make a Web app feel like a native mobile app know the frustration of trying to deal with orientation change and complex layout. Not being able to make a toxic mix of viewport meta tags, CSS media queries and onorientationchange events work to give me a fluidly resizing layout when the mobile device’s orientation changed drove me to despair. I compensated early on using JavaScript to resize everything, except I had to pay a performance penalty, especially if an app was complex. After a lot of sweat and blood and endless trial and error, I finally came up with a CSS only solution to making a layout that resizes smoothly with orientation changes.

So, the first big mistake, one that everyone and their brother recommends, is not to use the meta tag viewport settings of device width and device height. Instead, just use the initial scale, maximum scale and user scalability:

<meta name="viewport" content="initial-scale=1.0, maximum-scale=1.0, user-scalable=no">

The reason is that no matter what you set the width and height to with CSS, Webkit insists on thinking the document should have the height and width from when the document first loaded. This happens even if you use a CSS value of “width: 100%”. Switching from portrait to landscape, you’ll see that your layout fails to fill the width of the landscape screen:

iPhone Portrait Layout

iPhone Portrait Layout

iPhone Landscape Layout

iPhone Landscape Layout

As you can see with the landscape orientation the layout fails to fill the available width of the device. This app has its root elements’ widths set to 100% and a meta tag of:

<meta name="viewport" content="width=device-width; height=device-height; initial-scale=1.0, maximum-scale=1.0, user-scalable=no">

Removing the device width and height from the meta tag will give us the fluid layout we seek:

<meta name="viewport" content="initial-scale=1.0, maximum-scale=1.0, user-scalable=no">

With the above change, when switching this document loaded in portrait orientation to landscape mode orientation we get a resized document the way we would like:

iPhone Landscape Layout Correctly Resized

iPhone Landscape Layout Correctly Resized

OK, so we have a navbar on the top, but what if we want a toolbar on the bottom? No problem. We can accomplish that with a few adjustments. To fix the toolbar to the bottom we’ll use absolute positioning. One thing to remember about this layout technique, if you are going to have navbars or toolbars, you’ll need to adjust the height of the content so that it fits the space left over by the bars. I do this using a class or class on the content section. A navbar or toolbar has a default height of 45 pixels, so you’d want to position your content that distance from a navbar or toolbar. To make this work, we’re going to have to use absolute positioning on the content section and on any bottom toolbar. One thing rather frustrating about using absolute positioning on block elements is that it causes them to collapse to what their content is, even with they have a width of 100%. We can get around this by setting the appropriate side to 0 pixels. For a bottom toolbar this could be something like this:

.toolbar.bottom {
    height: 45px;
    position: absolute;
    bottom: 0;
    left: 0;
    right: 0;
}

With the above measurement, we have a toolbar that is 45px high fixed to the bottom and stretching from side to side. This toolbar will maintain these dimensions and placement even with an orientation change. We’ll need to do something similar for the content area. Like I said, we’ll need to use absolute positioning and account for any space taken up by a nav or toolbar. I use classes to do this, such as “withNavbar”, or “withNavbar withBottomToolbar”, or “withBottomToolbar”. The CSS for these classes would be something like this:

/* Definition for content area that fills the screen: */
#content {
    position: absolute;
    top: 0;
    right: 0;
    bottom: 0;
    left: 0;
}
#content.withNavbar {
    top: 45px;
    right: 0;
    bottom: 0;
    left: 0;
}
#content.withBottomToolbar {
    top: 0;
    right: 0;
    bottom: 45px;
    left: 0;
}
#content.withNavbar.withBottomToolbar {
    top: 45px;
    right: 0;
    bottom: 45px;
    left: 0;
}

We also need to make sure that the document’s content doesn’t bleed down below the bottom toolbar. We do this by wrapping the entire document in a div. I give it an id of #main:

<body>
	<div id="main">
		<div class="navbar">
			<h1>The Title</h1>
		</div>
		<div id="content" class="withNavbar withBottomToolbar">
			<ul class="table-view">
				<li><span class="title">Item One</span></li>
				<li><span class="title">Item Two</span></li>
				<li><span class="title">Item Three</span></li>
				<li><span class="title">Item Four</span></li>
				<li><span class="title">Item Five</span></li>
				<li><span class="title">Item Six</span></li>
				<li><span class="title">Item Seven</span></li>
				<li><span class="title">Item Eight</span></li>
			</ul>
		</div>
		<div class="toolbar placement-bottom">
			<div class="button">Edit</div>
			<div class="button">Save</div>
		</div>
	</div>
</body>

The styles for the div#main would be:

#main {
	width: 100%;
	display: -webkit-box;
	margin: 0 0 0 0;
	padding: 0;
	height: 100%;
	-webkit-box-orient: vertical;
	-webkit-box-align: stretch;
	-webkit-box-sizing: border-box;
	-webkit-transition: all 0.25s  ease-in-out;
	overflow: hidden;
	position: absolute;
	top: 0;
	left: 0;
	bottom: 0;
	right: 0;
}

Although the above arrangement solves the layout problems for mobile interfaces with automatic adjustment with orientation changes, it presents a new problem. That’s the problem of making the data in the content area reachable by the user. You’ll need to add a way for the user to scroll just that area. Normally the whole document would scroll with the browser, with the result that the top part would scroll out of view. Since we’ve fixed the toolbar to the bottom and have the height of the content area control by absolute position affecting its top, right, bottom and left, we need to provide a way to enable scrolling. Actually we could do this very simply using the CSS overflow property: #content { overflow-y: auto; }. However, on mobile Webkit this requires a two finger gesture. Most users would not expect this. They’ll use a single finger and think that the content is not scrollable.

There’s a simple way to provide single finger scrolling with a JavaScript module called “iScroll” created by Matteo Spinelli. This is a great implementation which provides deceleration animation of the scrolling, just like iOS, Android and other mobile OSes. One thing to be aware of when using iScroll, you don’t use it directly on the content container as this would cause that contain to slide up and down over the navbar and toolbar. Instead you’ll need to add an extra div tag inside it and use iScroll on that. iScroll will then enable scrolling of the div inside the content div. There are a number of options, my favorite is for desktop simulation. Here how you would do it:

<div id="content" class="withNavbar withBottomToolbar">
    <div id="scrollwrapper">
        <!-- Content In Here -->
    </div>
</div>
.........

<script type="text/javascript">
    var scroller = new iScroll(’scrollwrapper’, { desktopCompatibility : 
        true });
</script>

This gives you a basic mobile Web interface with a top navbar, a bottom toolbar and a content area with scroll that resizes quickly with orientation change.

Since publishing this article, I’ve created a framework for creating mobile Web apps. It uses many of the techniques explored in my blog posts. You can learn more about the framework by visiting ChocolateChip-UI.com. There are demos you can try in your desktop browser or on your mobile device.

Advertisements

Practical Examples of the Flexible Box Model

If there’s one thing in CSS3 that really gives me warm fuzzies, it’s the flexible box model. What it does is provides a way to create many layout affects that otherwise would require workarounds with float or positioning or both. And there are many types of layouts that without out it would require JavaScript to create the same effect. Sadly, at present the flexible box model is only implemented in Firefox, Safari and Chrome. As it turns out, Microsoft’s IE team approached the W3C standards teams with a proposal for a grid-based layout module. It appears to be based on experience implementing the Silverlight grid layout system, which is a good thing. Silverlight grids are a powerful layout tool and is the most important feature for creating interfaces with Silverlight. Because this grid proposal is very solid, the W3C has dropped all further work on the flexible box model and instead are moving ahead in finalizing the draft for the grid layout module. If you read that speck, you’ll realize how much we need a CSS grid system. For now, however, we do have the flexible box model working in Firefox, Chrome and Safari, as well as on mobile Webkit, which includes iOS, Android, WebOS, and Blackberry. This means that if you’re doing mobile development you can use the flexible box model today to help you implement your layout needs. Once you start using the flexible box model, you’ll hate having to go back to situations where it’s not available.

The flexible box model got a lot of attention from a post by Alex Russell back in August 2009. The good thing is that in his post he showed some of the practical things that the flexible box model addresses and provided a stylesheet with a small subset of the flexible box model properties that people could use right away. His post has been replicated and linked to all over the Web. Unfortunately a lot of people who are not familiar with the spec for the flexible box model are under the impression that what’s in his stylesheet is it. So, with that in mind I’m loosing another stylesheet on the public that allows a greater utilization of the flexible box model. I’ll also give you a layout where a lot of these are in use so that you can see how they work.

Before I get going let me say this. The flexible box model is not perfect. It isn’t supported by IE9 or Opera. And now it looks like the W3C is bypassing it for a more robust grid system. Personally, I’d like to see something like the Silverlight grid system combined with aspects of the flexible box model. That would be the best of both approaches. If you’re targeting the mobile Web, in other words you intend on target Webkit browsers, you can expect robust support for the flexible box model. I doubt it’s going to go away just because the W3C doesn’t include it in any recommendation. I expect it to remain in Webkit for the foreseeable future because it’s already been in use for a number of years.

The flexible box model is about the way a collection of child nodes gets laid out in relation to each other and their parent node. To achieve its layout goals, the flexible box model offers properties for the parent node as well as for the child nodes that determine the layout characteristics of the child nodes.

To work with the flexible box model you need to define its display property to box:

#myDiv {
    display: -webkit-box;
    display: -moz-box;
}

Elements with display set to box can order their child nodes in two orientations: vertical or horizontal. If no orientation is provided, the box defaults to vertical:

#myDiv {
    display: -webkit-box;
   -webkit-box-orient: horizontal;
    display: -moz-box;
    -moz-box-orient: horizontal;
}

Besides defining the orientation, you can also designate what direction the child elements stack, either normal or reverse. A box direction of reverse means the elements display in the opposite order in which they physically appear in the document, so that the first would be last and the last first. By default the box direction is normal stacking order.

Then there is the packing order. This allows you to define how the child elements are packed inside the parent. By default they are packed in from the beginning of the parent. For vertical orientation this is the top and for horizontal orientation this is the left. Other packing orders are end, center and justify. If the packing order is end, for a vertical orientation the elements will stack up from the bottom. For a box with horizontal alignment, the boxes will stack from the right. A packing order of center means that for vertical orientation the child elements will be centered vertical with any left over space displayed equally at the top and bottom. For horizontal orientation a packing order of center means the elements are centered horizontally with left over space equally divided on the left and right. A packing order of justified means that any available space is spread equally between the child elements, for vertical orientation this is vertical spacing, and for horizontal orientation this is horizontal spacing.

Box-align-start

A box with alignment set to "start"

box-align-end

A box with alignment set to "end"

box-align-center

A box with alignment set to "center"

And elements can have their box alignment defined. The default is stretch. This stretches the dimensions of the child elements to fill the parent box. If the alignment is start, for horizontal orientation the elements are aligned to the top of the parent. If the orientation is vertical, they are aligned to the left of the parent. An alignment of end will align elements with horizontal alignment to the bottom of the parent. With vertical orientation they will be aligned to the right of the parent. An alignment of center will align horizontal elements along the horizontal center of the parent and for vertical orientation it will center them along the vertical center of the parent. There is also an alignment of baseline, but this is only for horizontal orientation. It aligns the elements along their horizontal baseline.

Then there is a set of properties that you can define on the child elements. These are flex and ordinal group. The flex property tells the browser how to deal with the dimensions of the child element. If you have three child elements and they don’t fill their parent, giving one of the a value of flex:1 will cause that element to take up all the left over space. If you gave one element flex: 1 and another one flex: 2, the available space would be divided up such that the element with flex: 1 would get one third of the available space and the element with flex: 2 would get two thirds of the available space. Of course the element with no flex value would default to whatever its width is. The ordinal group property allows you to designate groups of elements so that they appear in a different order than their document order. I’m not so sure about the practical use for this property. I’ve thought about it for months and have not been able to come up with a use case where I would need it. But it’s there.

I’ve created a flexible box model stylesheet with classes for all the various box properties. This means you can add the classes to an element to build out the definition you need for an element. I’ve also put together a interactive test case where you can dynamically toggle a number of the box properties and see their effect in real time. You can try it out online if you’re using Firefox, Chrome or Safari, or you can download the working example to dissect and learn.

ChocolateChip Has Its Own Blog

ChocolateChip, the little guy that does big things

So, ChocolateChip, the tiny JavaScript mobile Web framework that is only 8k when minified, now has its own blog: ChocolateChip-Mobile.net. I put this blog together to show how ChocolateChip works and how you can use it to accomplish your coding needs. I also talk about best coding practices with ChocolateChip.

ChocolateChip can be so small because it doesn’t have to support ancient browsers or compensate for cross-browser nightmares. Instead it takes advantage of modern browsers’ implementation of the features in ECMAScript 5 and DOM level 3. The idea was to keep ChocolateChip simple, avoiding object wrappers and object obfuscation, and making everything interchangeable with regular JavaScript. That means you can adjust ChocolateChip to your coding style, not the other way around. You can substitute any ChocolateChip for your own code at any time. As a matter of fact, if you don’t like the default $, $$ aliases that ChocolateChip uses, open up the files and change them to whatever you want. ChocolateChip is open source with a BSD license, so if you want to add some feature, feel free to. And if you feel like sharing your feature with the rest of us, feel free to contact me.

Have a great day and enjoy your ChocolateChip.

Subpixel Rendering

You know the problem. No matter what you do you can’t get two elements to line up properly. The connecting points are always off by one pixel.

Everyone doing Web development at some point or other comes across a layout problem where no matter what you do, you can’t get two elements to align perfectly. One or the other is always off by one pixel. I was pulling my hair out try to get the pointers on the back and next buttons to align perfectly. They just didn’t look perfect. Worse still, when I used the browser’s “Zoom In” command from the view menu, I could clearly see that the lines did not connect properly.

After hours of fiddling with element sizes and positioning, I was on the verge of giving up. It was then that I remembered similar layout problems that I dealt with when doing Silverlight development. Silverlight is Microsoft’s vector-based, Flash killer/non-killer plugin for creating RIAs. For whatever reason, versiond before 4.0 had terrible problems with exact positioning of elements, causing frequent one pixel disconnects when rendered to screen. The only way to resolve this was to use subpixel rendering. This was accomplished by positioning an element by using partial pixel values, such as 1.5 or 1.25. This would force Silverlight to output the element with subpixel rendering, eliminating the visual disconnect.

OK, so what the heck is subpixel rendering? You experience it everyday with the browser’s font smoothing. You know it as anti-aliasing. The browser looks at the bézier curves of the font and when it sees that a line passes though a pixel, it looks at how much of the pixel is intersected. Depending on the percentage, the browser outputs a percentage of the font’s color. Less means the pixel gets less of the font’s color. For the human eye this creates the illusion of smoother curves.

You can use this same technique to trigger subpixel rendering on an element by giving it percentage-based position, or percentage-based dimensions. Here are some examples:

.button {
    position: absolute;
    left: 0px;
    top: 2.5px;
    height: 23.5px;
    width: 23.5px;
}

Here’s a image of my next button with the browser zoomed in. As you can see the pointer doesn’t line up perfectly with the rest of the button. This caused a slightly noticeable disconnect at normal size as well.

next button with its pointer misaligned

Now here’s the same button with the pointer using position set to top: 2.5px;:

next button using subpixel positioning

Subpixel rendering solved the connect problem I had at all zoom levels, including at normal size. Depending on your problem, subpixel positioning may be enough, or subpixel dimensions may be enough, or you may need to do both. Using subpixel values can help resolve problems when your layouts are not coming out pixel perfect.

You can try this out online or download the source code.

Today’s new technology terms:

subpixel:
   A pixel rendered with a shade of an adjacent element’s color to make it appear as if the element occupies part of that pixel’s space.
subpixelate:
   To force the browser to render an element with subpixel values.
subpixelation:
   The act of forcing an element to render with subpixel values or the condition of being rendered with subpixel values.

Making an iPhone Switch Control without Images

Works on desktop Safari, Chrome and Firefox, iPhone, iPod Touch and iPad.

On the iPhone and iPad, Apple uses a control called switch. It’s actually a different take on the checkbox. Like radio buttons, checkboxes do not lend themselves to touch interfaces, especially guys with fat fingers, cough! Instead of making us suffer with those dinky checkboxes, Apple uses a more visual cue to what the user is actually doing, switching something on or off. As a matter of fact, that’s exactly how the control is labeled: “on” or “off”. They’re really easy to use, just swipe your finger to throw the switch, done. In case you’re not sure what I’m talking about, here they are:

switch control

OK, so all the mobile Web frameworks have a switch control. And I hate them all. They either do an instant switch between the on and off state, using an image sprite, or they do this really lame thing where they animate the horizontal background position of the image on a checkbox with its default styles removed. None of those implementations feels the same as when you swipe the switch control in a native iOS app.

So what am I going to do? I tell you, I’m going to throw the friggin’ image out and build the whole control from scratch using just HTML, CSS3 and some JavaScript to make it work. Bada-bing! To start with, here’s the basic markup for a checkbox:

<div class="checkbox unchecked" id="sleepSwitch">
	<div class="on">ON</div>
	<div class="thumb"><span></span></div>
	<div class="off">OFF</div>
	<input type="checkbox" value="ZZZZZZZZ!" offvalue="But, I need more sleep!">
</div>

As we did when we created iPhone style radios buttons, we’re using real checkboxes in our iPhone switch controls. And like in the radio button example, we’ll set the checkbox input’s display value to “none”. We’ll use CSS3 properties to style the markup to look like a real iOS switch control and we’ll attach event listeners to set the input checkbox’s check state to true or false, depending on whether we want it to be selected or not.

To create this switch control we’ll need to style the frame named “checkbox” with rounded corners. Notice that the markup above contains three parts: the on state, the thumb and the off state. The rounded frame will only be wide enough to show one state plus the thumb. Using CSS3 transitions and transforms, a click or touch will cause the three elements to side back and forth within the rounded frame. For positioning the switch’s elements and sliding them back and forth we’re going to use CSS3 3d transforms on the x axis. Here is the CSS to make this happen:

/* Checkbox */
.checkbox {
	display: -webkit-box;
	-webkit-box-orient: horizontal;
	-webkit-box-pack:justify;
	-webkit-box-sizing: border-box;
	-webkit-tap-highlight-color: transparent;
	width: 94px;
	overflow: hidden;
	-webkit-border-radius: 6px;
	text-align: center;
	line-height: 28px;
	cursor: pointer;
	-webkit-user-select: none;
	position: absolute;
	right: 10px;
	top: 7px;
}
.checkbox > input[type="checkbox"] {
	display: none;
}
.checkbox .thumb {
	-webkit-border-radius: 7px;
	position: relative;
	z-index: 3;
	border: solid 1px #919191;
	-webkit-transition: all 0.125s  ease-in-out;
	-webkit-transform: translate3d(0px,0%,0%);
}
.checkbox .thumb span {
	display: block;
	-webkit-box-sizing: border-box;
	height: 25px;
	width: 38px;
	border-top: solid 1px #efefef;
	-webkit-border-radius: 6px;
	background-image: -webkit-gradient(linear, left top, left bottom, from(#cecece), to(#fbfbfb));
	border-top: solid 1px #efefef;
	position:relative;
}
.checkbox .on {
	color: #fff;
	background-image: 
		-webkit-gradient(linear, left top, left bottom, 
			from(#295ab2), 
			to(#76adfc));
	width: 54px;
	padding-right: 4px;
	border: solid 1px #093889;
	-webkit-border-top-left-radius: 6px;
	-webkit-border-bottom-left-radius: 6px;
	margin-right: -6px;
	height: 25px;
	-webkit-transition: all 0.125s  ease-in-out;
	position: relative;
	-webkit-transform: translate3d(0px,0%,0%);
}
.checkbox .off {
	color: #666;
	background-image: -webkit-gradient(linear, left top, left bottom, from(#b5b5b5), color-stop(0.50, #fff));
	width: 54px;
	padding-left: 4px;
	border: solid 1px #a1a1a1;
	-webkit-border-top-right-radius: 6px;
	-webkit-border-bottom-right-radius: 6px;
	margin-left: -6px;
	height: 25px;
	-webkit-transition: all 0.125s  ease-in-out;
	position: relative;
	-webkit-transform: translate3d(-54px,0%,0%);
}
.checkbox.unchecked .thumb {
	-webkit-transform: translate3d(-54px,0%,0%);
}
.checkbox.checked .thumb {
	-webkit-transform: translate3d(0px,0%,0%);
}
.checkbox.unchecked .on {
	-webkit-transform: translate3d(-60px,0%,0%);
}
.checkbox.checked .on {
	-webkit-transform: translate3d(0px,0%,0%);
}
.checkbox.unchecked .off {
	-webkit-transform: translate3d(-54px,0%,0%);
}
.checkbox.checked .off {
	-webkit-transform: translate3d(6px,0%,0%);
}
/* For Very Important changes, use the orange checkbox */
.checkboxBase.important .on {
	border: solid 1px #d87100;
	background-image: -webkit-gradient(linear, left top, left bottom, from(#e75f00), color-stop(.5, #ff9c12));
}
/* End Checkbox */

To make the switch more realistic, I’m transforming all three pieces of the switch at the same time. This gives the switch a more realistic feeling. Notice the comment in at the end of the above CSS about the important class. You can use this to indicate a switch that makes a very important change. This class changes the default switch’s blue color to bright orange. This is the color Apple uses to show that a switch’s action is very important.

Having the CSS defined for the look and animation brings us close to the finished control, but we need to write some JavaScript to make the switch interactive. The JavaScript needs to do two things: toggle the classes “checked” and “unchecked” on the switch, and toggle the checked value of the checkbox between true and false. I’m using the ChocolateChip JavaScript framework to do this. You can switch my code to whatever library you want. If you know basic JavaScript, it shouldn’t be hard. Here’s the JavaScript to make it happen:

Element.prototype.toggleSwitch = function() {
	if (this.hasClass("switch")) {
		if (this.last().checked === true) {
			this.last().checked = false;
			this.toggleClass("checked", "unchecked");
		} else {
			this.last().checked = true;
			this.toggleClass("checked", "unchecked");
		}
	} else {
		return false;
	}
};

The last() used in the code above is a ChocolateChip method to return the last child of the control, which happens to be the checkbox input. That way we can set its checked state to true or false.

Now that we have the code to setup up the switch control, we can make it work as follows:

$(".switch").forEach(function(checkbox) {
	checkbox.bind("click", function() {
		this.toggleSwitch();
	});
	
	checkbox.bind("touchstart", function(e) {
		e.preventDefault();
		this.toggleSwitch();
	});
}); 

That’s it to make the switch switchable. But to make it do something you’d need a bit more as well. In my example, I’m getting some values from the switch and outputting it to a response field like this:

$(".switch").forEach(function(checkbox) {
	checkbox.bind("click", function() {
		if (this.last().checked === true) {
			$("#switchResponse").fill(
				this.last().getAttribute("value"));
		} else {
			$("#switchResponse").fill(
				this.last().getAttribute("offvalue"));
		} 
	});
	
	checkbox.bind("touchstart", function(e) {
		if (this.last().checked === true) {
			$("#switchResponse").fill(
				this.last().getAttribute("value"));
		} else {
			$("#switchResponse").fill(
				this.last().getAttribute("offvalue"));
		}
	});
}); 

You can try this out online or download the source code.

User Controled Color Theme

Works on Desktop Safari, desktop Google Chrome, desktop Firefox 3.6-4, iPhone, iPod Touch, iPad.

So, in the last blog post I showed how to make RGB slides with HTML, CSS and some JavaScript. I thought about it and, while interesting, it doesn’t have a whole lot of practical application. Sure you could take that and hook up any other type of value to get whatever result you might need for your interface. Well that got me to thinking, so I threw together an implementation of the RGB sliders that allow a user to change the color scheme of a Web app. No need to spend time creating different color themes. Let the user do it.

OK, before you think I’m crazy, especially you folks from the design community, let me explain. I came up with a basic theme technique. I call it chromaeleon &mdash because the app’s chrome can change colors like a chamaeleon. The way this works is, instead of solid color gradients, you create gradients with transparent values of black and white. Behind this you have a background color which shows through the transparent gradients. This way, when the user drags the sliders, the background colors update and the look of the interface changes. Now in the real world you’d want to provide a way for the user to save their color choice. You could save the choice to localStorage. Then when the app loads, it checks to see it the user saved a color choice, if not, it goes to the default. Sorry, I didn’t do all of that. Just the part to update the background colors. Here’s what it will look like:

iPhone Chromaeleon Interface

The structure we’re going to use is pretty must standard as we’ve used elsewhere, a header, a section, some buttons.

<body>
	<header>
		<a href="http://css3wizardry.com" class="button back"><span class="pointer"></span><span>Back</span></a>
		<h1>Chromaeleon Theme</h1>
		<span class="button">Click Here</span>
	</header>
	<section>
		<h2>Use the sliders to adjust the colors of the theme.</h2>
		<div class="colorRow">
			<div id="redSlider" class="slider">
				<div class="thumb"></div>
			</div>
			<div id="redColor" class="colorOutput"></div>
			<span> Red</span>
		</div>
		<div class="colorRow">
			<div id="greenSlider" class="slider">
				<div class="thumb"></div>
			</div>
			<div id="greenColor" class="colorOutput"></div>
			<span> Green</span>
		</div>
		<div class="colorRow">
			<div id="blueSlider" class="slider">
				<div class="thumb"></div>
			</div>
			<div id="blueColor" class="colorOutput"></div>
			<span> Blue</span>
		</div>
		<div class="colorRow finalResult">
			<span>Final Color: </span>
			<div id="rgbColor" class="colorOutput"></div>
			<br />
			<span>RGB: </span><span id="rgbResult">0, 0, 0</span>
			<br />
			<span>HEX: </span><span id="hexResult">#000000</span>
		</div>
	</section>
</body>

So, for the header and the buttons, we need to change their default gradients, as I mentioned above, to have RGBA transparency values. This is my basic gradient:

background-image: 
	-moz-linear-gradient(top, 
		rgba(255,255,255,.5), 
		rgba(30,30,30,.65) 50%, 
		rgba(0,0,0,.7) 50%, 
		rgba(0,0,0,.8)); 
background-image: 
	-webkit-gradient(linear, left top, left bottom, 
		from(rgba(255,255,255,.5)), 
		color-stop(0.5,rgba(30,30,30,.65)), 
		color-stop(0.5, rgba(0,0,0,.7)), 
		to(rgba(0,0,0,.8)));

And for the hover state of the button, we use this gradient:

background-image: 
	-webkit-gradient(linear, left top, left bottom, 
		from(rgba(0,0,0,.1)), 
		color-stop(0.5,rgba(0,0,0,.5)), 
		color-stop(0.5, rgba(0,0,0,.6)), 
		to(rgba(255,255,255,.2)));
background-image: 
	-moz-linear-gradient(top,
		rgba(0,0,0,.1), 
		rgba(0,0,0,.5) 50%, 
		rgba(0,0,0,.6) 50%, 
		rgba(255,255,255,.2));

Now to change the color, all we need to do is introduce a new method to our existing code:

/**
*
* Method to update chrome colors according to the RGB value of the sliders.
*
*/
$.updateInterfaceColors = function() {
	$("header").css("background-color: rgb(" + $.rgbColor[0] + "," + $.rgbColor[1] + "," + $.rgbColor[2] + ")");
	$$(".button").forEach(function(button) {
		button.css("background-color: rgb(" + $.rgbColor[0] + "," + $.rgbColor[1] + "," + $.rgbColor[2] + ")");
	});
	$("section").css("background-color: rgb(" + $.rgbColor[0] + "," + $.rgbColor[1] + "," + $.rgbColor[2] + ")");
	$(".pointer").css("background-color: rgb(" + $.rgbColor[0] + "," + $.rgbColor[1] + "," + $.rgbColor[2] + ")");
};

To execute this method, we invoke it in the slide mouse event handlers for each slider, and for touch-based mobile devices we invoke it in the updateSliderTouch method:

/**
*
* This is for the red slider's mouse interaction, you'd do the same for the green and blue sliders' setup scripts as well.
*/
// Set up three sliders for Red, Green and Blue:
$.slider("#redSlider", { 
	onDrag : function() {
		$("#redSlider").setColorFromSlider("red");
		$.updateInterfaceColors();
	},
	// onDragEnd function necessary to remove hover state off of slider thumb when drag ends.
	onDragEnd : function() {},
	top : -6
});
/**
*
* This is for touch-enabled devices. You invoke the $.updateInterfaceColors() method just once inside the updateSliderTouch method's definition, at the very end.
*/
Element.prototype.updateSliderTouch = function( color ) {
	this.style.left =  curX + 'px'; 
	if (color === "red") {
		$("#" + color + "Color").css("background-color: rgb(" + curX +",0,0)");
		$.rgbColor[0] = curX;
	}
	if (color === "green") {
		$("#" + color + "Color").css("background-color: rgb(0," + curX +",0)");
		$.rgbColor[1] = curX;
	}
	if (color === "blue") {
		$("#" + color + "Color").css("background-color: rgb(0,0," + curX +")");
		$.rgbColor[2] = curX;
	}
	$("#" + color + "Slider").css("-webkit-background-size:" + (curX + 1) + "px 9px, 100% 9px");
	$("#" + color + "Slider").css("background-size:" + (curX + 1) + "px 9px, 100% 9px");
	$("#rgbColor").css("background-color: rgb(" + $.rgbColor[0] + "," + $.rgbColor[1] + "," + $.rgbColor[2] + ")");
	$("#rgbResult").fill($.rgbColor[0] + ", " + $.rgbColor[1] + ", " + $.rgbColor[2]);
	$("#hexResult").fill("#" + $.rgb2hex($.rgbColor[0]) + $.rgb2hex($.rgbColor[1]) + $.rgb2hex($.rgbColor[2]));
	$.updateInterfaceColors();
};

This works great on desktop Safari, Chrome and even Firefox (Yay!), and fine on the iPad. For iPod Touch or iPhone you need to load it in portrait mode. it’s a bit cramped due to the size of the sliders. I needed them to be at least 255px long for the RGB values, and then borders, box shadows and the extra space for the thumbs made them barely fit in the iPhone’s and iPod Touch’s default width. Try hitting the plus icon at the bottom of the browser and save it to you device’s desktop. Then run it from there, you’ll have more vertical space. You can try this out online or download the source code. Enjoy!

Range Slider with CSS and JavaScript

Works on desktop Safari, desktop Chrome, desktop Firefox 3.5 – 4, iPhone, iPod Touch, iPad.

In this post I’m going to show how to make a range slider using HTML, CSS and JavaScript that works with both a mouse and a finger. The mouse-enabled version required a small drag-and-drop JavaScript framework. Fortunately I had already put that together several years back. After spending some time playing around with touch events on mobile Webkit, I was able to come up with a way to implement horizontal dragging for the range slider.
range slider

I’m not going to go into details about my mouse-enable drag-and-drop framework. You can popup it open and read the copious comments in the example. However, I will explain how I implemented the touch-enabled drag for the slider.

The structure for a slider is fairly straightforward. You need a track and a thumb:

<div id="redSlider" class="slider">
	<div class="thumb"></div>
</div>

Since the structure is so simple, you might be wondering how we give it the look. The thumb gets border radius to make it round, along with a box shadow and a background-gradient, including a blue background gradient for hover. The slider track is styled with two background gradients, the bottom-most gradient is the default grey which swans the width of the slider. Layered on top of the same track is a second, bluish gradient. By using CSS3’s background sizing property, we will dynamically resize it as the slider’s thumb is dragged.

Of course, just dragging a slider thumb back in forth is not suck a big deal. I therefore created three sliders implemented as RGB pickers. By dragging each thumb, you add or subtract from a red, green or blue value. Down below you’ll see the final RGB and Hex values.
RGB Slider

Here are the basic styles for the slider:

.slider {
	display: inline-block;
	-webkit-box-sizing: border-box;
	-moz-box-sizing: padding-box;
	box-sizing: padding-box;
	-webkit-box-shadow: 2px 2px 4px #666;
	-moz-box-shadow: 2px 2px 4px #666;
	box-shadow: 2px 2px 4px #666;
	height: 9px;
	width: 277px; 
	padding: 1px;
	-webkit-border-radius: 4px;
	-moz-border-radius: 4px;
	border-radius: 4px;
	background-image: 
		-webkit-gradient(linear, left top ,left bottom,
		   from(#0a3a86),
		   color-stop(.5, #4c8de7),
		   color-stop(.95, #6babf5),
		   to(#0a3a86)),
		-webkit-gradient(linear, left top ,left bottom,
			from(#919191),
			color-stop(.5, #f0f0f0),
			color-stop(.5, #fff),
			color-stop(.95, #fff),
			to(#919191));
	background-image: 
		-moz-linear-gradient(top,
		   #0a3a86,
		   #4c8de7 50%,
		   #6babf5 95%,
		   #0a3a86),
		-moz-linear-gradient(top,
			#919191,
			#f0f0f0 50%,
			#fff 50%,
			#fff 95%,
			#919191);
	background-repeat: no-repeat, repeat-x;
}
.thumb {
	position:relative;
	-webkit-box-shadow: 2px 2px 3px #666;
	-moz-box-shadow: 2px 2px 3px #666;
	box-shadow: 2px 2px 3px #666;
	height:20px;
	width:20px;
	left: 0px; 
	top: -6px;
	-webkit-border-radius: 10px;
	-moz-border-radius: 10px;
	border-radius: 10px;
	background-image: 
	   -webkit-gradient(linear, left top, left bottom,
		   from(#aaa),
		   color-stop(.5, #ddd),
		   to(#ccc));
	background-image: 
	   -moz-linear-gradient(top,
		   #aaa,
		   #ddd 50%,
		   #ccc);
	cursor: move;
	-webkit-tap-highlight-color: transparent;
}
.thumb:hover, .thumb.hover {
	background-image: 
	   -webkit-gradient(linear, left top, left bottom,
		   from(#6297f2),
		   color-stop(.5, #0251ae),
		   to(#6297f2));
	background-image: 
	   -moz-linear-gradient(top,
		   #6297f2,
		   #0251ae 50%,
		   #6297f2);
}

Notice the slider’s background gradient style. The first background gradient will be the top-most. The last will be the bottom-most. But the top-most is going to be the blue part of the track that appears to the left of the thumb as it is dragged away from the left start of the range slider.

We also need some styles to set the initial states of the three thumbs. Notice that I’ve used background sizing to control the two background gradients. The first is for the blue top-most gradient, the second is for the full width grey gradient.

#redSlider .thumb {
	left: 121px;
}
#redSlider {
	-webkit-background-size: 123px 9px, 100% 9px;
	-moz-background-size: 123px 9px, 100% 9px;
	background-size: 123px 9px, 100% 9px;
}
#greenSlider .thumb {
	left: 156px;
}
#greenSlider {
	-webkit-background-size: 158px 9px, 100% 9px;
	-moz-background-size: 158px 9px, 100% 9px;
	background-size: 158px 9px, 100% 9px;
}
#blueSlider .thumb {
	left: 230px;
}
#blueSlider {
	-webkit-background-size: 232px 9px, 100% 9px;
	-moz-background-size: 232px 9px, 100% 9px;
	background-size: 232px 9px, 100% 9px;
}

So, I’ve defined two gradients with different background repeats: background-repeat: no-repeat, repeat-x; and background sizing with values such as: 123px 9px, 100% 9px. 9px is the height of the slider track. The bottom-most gradient has a width of 100%, and the top-most bluish one gets a width of 123px. By using these values, with very little markup, we can create visually and functionally complex structures.

/**
* Touch enabled support:
*/
/**
*
* Method to set the colors of color swatches and width of the slider progress track when the slider thumb is dragged.
*/
Element.prototype.setupSliderTouch = function( event ) {
	event.preventDefault();
	var el = event.target;
	var touch = event.touches[0];
	curX = touch.pageX - this.parentNode.offsetLeft;
	if (curX <= 0) { 
		curX = 0;
	}
	if (curX > 255) {
		curX = 255;
	}
};
Element.prototype.updateSliderTouch = function( color ) {
	this.style.left =  curX + 'px'; 
	if (color === "red") {
		$("#" + color + "Color").css("background-color: rgb(" + curX +",0,0)");
		$.rgbColor[0] = curX;
	}
	if (color === "green") {
		$("#" + color + "Color").css("background-color: rgb(0," + curX +",0)");
		$.rgbColor[1] = curX;
	}
	if (color === "blue") {
		$("#" + color + "Color").css("background-color: rgb(0,0," + curX +")");
		$.rgbColor[2] = curX;
	}
	
	$("#" + color + "Slider").css("-webkit-background-size:" + (curX + 1) + "px 9px, 100% 9px");
	$("#" + color + "Slider").css("background-size:" + (curX + 1) + "px 9px, 100% 9px");
	
	$("#rgbColor").css("background-color: rgb(" + $.rgbColor[0] + "," + $.rgbColor[1] + "," + $.rgbColor[2] + ")");
	$("#rgbResult").fill($.rgbColor[0] + ", " + $.rgbColor[1] + ", " + $.rgbColor[2]);
	$("#hexResult").fill("#" + $.rgb2hex($.rgbColor[0]) + $.rgb2hex($.rgbColor[1]) + $.rgb2hex($.rgbColor[2]));
};

$("#redSlider > .thumb").bind('touchmove', function(event) {
	this.setupSliderTouch(event);
	this.updateSliderTouch("red");
});
$("#greenSlider > .thumb").bind('touchmove', function(event) {
	this.setupSliderTouch(event);
	this.updateSliderTouch("green");
});
$("#blueSlider > .thumb").bind('touchmove', function(event) {
	this.setupSliderTouch(event);
	this.updateSliderTouch("blue");
});

Basically, I attach a touchmove event to the slider thumbs. The event listener passes the event to the setupSliderTouch method. The first thing the setupSliderTouch method does is to prevent the default interaction from taking place, such as page scrolling. We want the user to be able to move the thumb without scrolling the page. From the event passed in to setupSliderTouch we get the touch event and calculate its x coordinate on the screen. To calculate the touch’s position in relation to the slider, we subtract the left offset of the slider from the pageX of the touch. This gives us the left-most edge of the slider’s thumb. We store this as curX. We check the value of curX. If it is less than zero, we set it back to zero. We do this because this value will be used to set the position of the thumb and one of the RGB values. We don’t want either the thumb being dragged off of the left edge of the slider, nor a value less than zero, since RGB values start at zero. We do the same thing when the curX value is greater than 255 for the same reasons.

The updateSliderTouch method uses the value of the slider’s thumb to calculate and update RGB and Hex values, giving the user visual feedback as the thumb is dragged. Then we use the value of curX to update the background size of the blues background gradient on the slider track:

$("#" + color + "Slider").css("-webkit-background-size:" + (curX + 1) + "px 9px, 100% 9px");
$("#" + color + "Slider").css("background-size:" + (curX + 1) + "px 9px, 100% 9px");

That’s all there is to it. You can try this out online using desktop Safari, Chrome, or Firefox for the mouse version, or on an iPhone, iPod Touch or iPad for the touch version. Or you can download the source code, which I recommend, so you can dig into the CSS and JavaScirpt.

Update: September 15, 2010
If you’re trying this out on an iPhone, I noticed that there seems to be a very slight delay before an initial touch is registered on the screen. This means that in order to slide the thumb, you need to press and hold for a very brief moment before sliding, otherwise no touch gets registered and nothing happens. This doesn’t seem to happen when performing the same action on the iPad. Touches seem more responsive.